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Abstract

Algorithms are the foundation of technology today. From medicine
to education and beyond, algorithms serve to solve complex problems.
This paper explores several types of recursive algorithms and compares
them using the conventional notation of time complexity. We analyze
algorithms such as the Karatsuba algorithm and the Strassen algorithm,
two kinds of algorithms that reduce the time it takes to multiply numbers.

1 Introduction

1.1 General Definitions

Algorithms are the foundation of society today. From medicine to education
and beyond, algorithms serve to solve complex problems often by organizing
large sets of data to identify patterns and solutions.

Algorithms are essentially a set of procedures a computer executes to convert a
set of input to a desired set of output. For example, schools use applications to
create schedules for students. Course selections of all the students are inserted
into an algorithm that creates an unique schedule for each student by taking
into account factors such as class size, teacher availability, sections and more.
This is one example of the type of problems algorithms attempt to solve.
The applications of algorithms are numerous and can be found in almost all fields
today. In medicine, for example, DNA and protein modeling is an important
task to develop drugs and vaccines. A computer must analyze millions of bases of
the DNA to locate patterns or specific genes. An example of such an application
is the Human Genome project.

1.2 Time Complexity

In a competitive world where countless solutions are being worked on to solve
a problem, there must exist a universal way for comparing and determine how
an algorithm behaves.

To illustrate this in an intuitive way, let’s consider the time it takes for a car
and a person to travel 10 feet. If both start from rest, the person will likely
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reach the 10 feet mark first because the car will take extra time to turn on.
However, if the car and the person were required to travel 10 miles, the car
will definitely reach first. Though the type of car and the speeds of different
individual will vary, the general behavior of each over a long period of time will
help us determine which mode of transportation is a better option. A similar
idea can be applied to algorithms.

Rather than only looking at how algorithms behave for small input size, the
general behavior of the function as the input size increases must be considered.
Though it may seem reasonable to simply measure the time it takes to run an
algorithm, this is not an accurate reflection of the algorithm’s efficiency because
factors such as the type of hardware, other applications running at the same
time, and more will cause the run time to vary from device to device. Therefore,
a machine independent way of comparing algorithms must exist.

An algorithm’s run time primarily depends on the input size. As the input
size increases, the time it takes to execute the algorithm also increases. Each
algorithm has a certain correlation between the input size and the run time,
where the run time is described in terms of the input size.

The terms run time and input size can be defined more precisely:

Definition 1.1 (Run Time) The run time of an algorithm is the number of
steps or operations executed; it is machine independent.

Definition 1.2 (Input Size) The number of elements in the input is the in-
put’s size.

To measure the run time for an algorithm, three cases must be considered:
worst-case, best-case, and average case scenarios. Each case is analyzed by
setting an asymptotic bound on the algorithm. Setting an asymptotic bound
on the algorithm indicates how the function will behave over time.

The three most common bounds that can be set on an algorithm are as following:

Definition 1.3 (Big O O(n)) This gives the upper-bound of an algorithm’s
run time, describing the worst-case scenario run time.

For a given function g(n),
O(g(n)) = f(n) : there exists positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0
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Figure 1: The graph represents various relationships that can exist between the
input size and the worst-case run time.

Definition 1.4 (Big-Omega Ω) This sets the lower bound on an algorithm
and indicates the best-case scenario when the algorithm preforms the least
amount of work.

For a given function g(n),
Ω (g(n)) = f(n) : there exists positive constants c and n0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0

Definition 1.5 (Theta Θ) This describes the best and worst case scenario. It
sets both an upper and lower bound, giving the exact bound.

For a given function g(n),
Θ(g(n)) = f(n) : there exists positive constants c1, c2, and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0
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1.3 Search Algorithms

Search algorithms are used to located specific elements in an array. The most
basic search algorithm is the linear search

Suppose we have a list of n integers, such as [1, 2, 3, 4, 5, 6, 7, 8, 9] and the integer
7 must be found.

In linear search, the algorithm will look through every single input to find the
desired value. In the best-case scenario, the desired value can be the first item
in the list, and the run-time can be expressed as O(1). This is referred to as
constant time, where the number of operations to find the value is only one.

In the worst-case scenario, the desired value will be the last item in the list, and
the algorithm will need to analyze every single item in the input, resulting in
the run-time of O(n). This is called the linear time because as the input size
increases, the run-time increases linearly.

Binary Search, also known as half interval search, is a more efficient type of
searching algorithm than linear search. Binary search must be performed on
a sorted array, where the inputs are organized in ascending order. The target
value is compared to middle term in the array. The algorithm eliminates the
half that does not contain the target value, depending on if the target value
is greater than or less than the middle term. The process of comparing and
eliminating continues until the target value is found, or the algorithm reaches a
point where it can no longer continue and the term is not found.

This procedure can be described mathematically in the following way:

Consider an sorted array S with n elements:
[S1 ≤ S2 ≤ S3 ≤ S4...Sn−1]

The target value T must be identified in the set. Each element in the set is
assigned an index, starting at 0 and going up to n

1. Set min = 0 and max = n− 1

2. If min > max, the search ends and the target is not included in the array.

3. Compute the middle term m by solving (min+max)/2

4. If Sm = T , the target has been found and the search ends.

5. If Sm < T , set min to m+ 1 and repeat from step 2

6. If Sm > T set max to m− 1 and repeat from step 2.

As the size of the input increases, the number of operations required to find
the target values increases by log2n. For example, when n is 4, the worst-case
scenario requires 2 operations. When n is 512, the worst-case scenario requires
at 9 operations to find the target. The time complexity of the binary search
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can be expressed as O(log2n). On large scales, the binary search is significantly
faster than the linear search.

1.4 Sorting Algorithms

Sorting algorithms are used to sort large arrays of unorganized data. Some
common sorting algorithms include insertion sort, bubble sort, selection sort,
merge sort and more.

Bubble Sort

Suppose we have an unsorted array B[1, 4, 3, 5, 8, 2] and we want to arrange it in
ascending order. Bubble sort examines each element in the array and compares
it to the adjacent element. If the adjacent element is smaller, the two elements
swap, and the greater element is now on the right side. This process pushes the
largest element in the array to the right. The algorithm repeatedly swaps the
elements until all elements are correctly sorted.

[1, 4, 3, 5, 8, 2]
[1,4, 3, 5, 8, 2] swap

[1, 3,4, 5, 8, 2
[1, 3, 4,5, 8, 2]

[1, 3, 4, 5,8, 2] swap
[1, 3, 4, 5, 2, 8]

The algorithm will perform several more iteration to move all the remaining
elements in the right position. The algorithm must go through an additional
pass without any swapping to know that the array has been sorted. In the

best case scenario when the smallest number is furthest to the right, at least n
swaps must occur.

For large arrays, the bubble sort is not the most efficient algorithm because it
has a time-complexity of O(n2).

2 Recursive Algorithms

2.1 Introduction

Organizing large sets of data is a vital aspect of computer science, and data sci-
entists implement recursive algorithms to solve problems involving large inputs.
When computing a large problem, recursive algorithms divide the larger prob-
lem at hand into smaller sub-problems by recalling itself. Generally, it divides
the input until the base case is reached and performs the algorithm’s objective
on easily solvable instances. This method reduces the number of operations a
computer must perform, but increases the memory required when applied at
large scales.

5



2.2 Fibonacci Sequence

The Fibonacci Sequence is an excellent example to demonstrate recursive algo-
rithms. The Fibonacci Sequence is a list of numbers where each number is the
sum of the two numbers that precede it.

Where n is the n-th number in the series and the base values are 0 and 1, the
Fibonacci Sequence can be described as:

F0 = 0
F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

Below are the first few numbers of the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

The recursive approach involves dividing a large problem into sub-problems,
and recursively calling the function upon each of the smaller sub-problems.
Eventually, the base cases are reached and recursive calls can no longer be
applied.

For example to find F5, the following procedures can be performed:

F5 = F4 + F3

= (F3 + F2) + (F2 + F1)
= (F2 + F1 + F0 + F1) + (F1 + F0 + F1)

= (F1 + F0 + F1 + F0 + F1) + (F1 + F0 + F1)

On a large scale, calculating the nth term in such a manner is unfeasible and time
consuming. This is where dynamic programming plays a key role in reducing
the number of operations, however, we we will not be exploring that in this
paper.

3 Karatsuba Algorithm

Discovered by Anatoly Karatsuba in 1960, the Karatsuba algorithm is a fast
way of multiplying two numbers. Multiplying large numbers efficiently is an
important task for computer scientists, however the traditional, naive way of
multiplying numbers involves multiplying each digit in one number to each
digit in the second number, requiring n2 single-digit computations. As the
size of multiplication increases, the time required to solve using the naive way
increases dramatically. However, the Karatsuba multiplication algorithm uses
the divide and conquer procedure to reduce the time complexity from O(n2) to
O(nlog23) ≈ O(n1.58)
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3.1 Naive Method of Multiplication

First, let’s analyze the naive method of multiplying numbers that is traditionally
taught in schools.

For example, two even-digit number are chosen

x = 1345
y = 5624

To find the product, each digit in y must be multiplied to each digit in x. For
example, the 4 in x must be multiplied to every single digit in 1345, then 2 must
be multiplied to every single digit in 1345 and so on and so forth.

1345
∗ 5624

5380
26900
807000

+6725000

7564280

A total of four sub-products must be solved to find the final answer, and each
”sub-product” involves four computations. In total, 16 single-digit computa-
tions must be carried out to find the product of x and y.

If n represents the number of digits in each number, the naive method of mul-
tiplying requires n2 single digit computations to find the product of any two
n-sized numbers.

3.2 Applying Karatsuba Algorithm

The Karatsuba Algorithm applies the divide and conquer procedure to reduce
the time required to multiple two n-digit numbers. If the numbers are odd, zeros
can be added on the left to make it an even number. This algorithm divides
the problem into three-sub problems, and involves some basic arithmetic and
shifts to join the results to produce the final product. Instead of executing
16 computations (n2), the Karatsuba algorithm only utilizes 12 computations
(n1.58)

The numbers x and y can be expanded and be expressed in the following manner:

x = 1300 + 45
y = 5600 + 24

Each number can be divided into its lower and higher “bits”

The bits of x are as following:
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low bit = 45 = a
high bit = 13 = b

The bits of y are as following:

low bit = 24 = c
high bit = 56 = d

The product of x and y can written as:

xy = (1300 + 45)(5600 + 24)

The distributive property can be applied to simplify the expression:

xy = (1300 ∗ 5600) + (1300 ∗ 24) + (5600 ∗ 45) + (45 ∗ 24)

xy = (13 ∗ 56) ∗ 104 + (13 ∗ 24 + 56 ∗ 45) ∗ 102 + 45 ∗ 24

Once again, 4 products must be solved, each involving 4 single-digit multiplica-
tions. A total of 16 computations (n2) must be performed to find the product.

The Karatsuba Algorithm takes advantage of recursions to compute this at a
faster rate.

The Karatsuba algorithm divides the problem into three sub-problems. Since
three terms are being added, the algorithm divides the sub-products in the
following way:

1. The product of the higher bits ac = 13 ∗ 56

2. The product of the lower bits bd = 45 ∗ 24

3. The middle term (ad+ bc) is found by solving the expression

(a+ b)(c+ d)− ac− bd = (13 + 45)(56 + 24)− 13 ∗ 56− 45 ∗ 24 (1)

The expression in the third sub-problem can be simplified to prove that it indeed
equals to (ad+ bc)

(a+ b)(c+ d)− ac− bd = (ad+ bc)

(ac+ ad+ bc+ bd)− ac− bd
ad+ bc

The Karatsuba algorithm applies recursions to ”recall” the values of ac and bd
in the third sub-problem, and subtracts that from the product of xy

3.3 Generalized Karatusba Algorithm

The following procedures can be applied to the product of any two n-sized
numbers. If the numbers contain odd digits, a zero can be added on the left to
make it even.
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x = a ∗ 10n/2 + b
y = c ∗ 10n/2 + d

The multiplication of x and y can be shown as:

xy = (a ∗ 10n/2 + b)(c ∗ 10n/2 + d) (2)

When all the terms are multiplied, the result is the following:

xy = ac ∗ 10n + (ad+ bc) ∗ 10n/2 + bd

To apply the Karatusba algorithm, create the following three sub-problems,
where b represents the base of the numbers:

H = ac
L = bd

M = (a+ c)(b+ d)−H − L
xy = H ∗ bn +M ∗ bn/2 + L

3.4 Analyzing Run Time

The Karatsuba Algorithm can be applied until the problem is reduced to the
multiplication of single-digit numbers. Since only three multiplication of size n/2
are being carried in addition to some basic arithmetic, the algorithm reduces
the time complexity from O(n2) to:

O(nlog23) = 3T (n/2) +O(n) (3)

On a large scale, the Karatusba algorithm provides a dramatic improvement over
the naive algorithm. For example, to multiply two 570 digit numbers, the naive
method would require 324900 single-digit computations, where as the Karatsuba
algorithm would use approximately 23332 single-digit multiplications.

4 Akra Bazzi method and Algorithm Analysis

4.1 Recurrence Relations and Merge Sort

Merge sort is a type of recursive algorithm that uses the divide-and-conquer
approach to reduce the time it takes to sort arrays in the following way:

1. Divides the array of n elements in half

2. Sorts the two sub arrays recursively

3. Merges the two sorted sub-arrays, resulting in one sorted array

The time complexity of merge sort can be expressed as :
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T (n) = 2T (n/2) + Θ(n) (4)

We can use the Akra Bazzi method to prove that the merge sort has a time com-
plexity of O(nlogn). It is much more efficient than various sorting algorithms,
such as insertion sort and quick sort.

To start, we will define a recurrence relation as an expression of a certain term
in a sequence as a function of a set number of terms preceding it. The Mas-
ter theorem can give us the asymptotic complexity, or time for the worst case
scenario of a recurrence relation.

The theorem takes the form

T (n) = aT
n

2
+ f(n) (5)

where aT n
2 represents the time it takes to recurse down to a workable problem

size, with each problem being size n
b , and f(n) representing the time it takes

to work with the small problem. However, this theorem cannot be applied to
recurrences that aren’t split into evenly sized sub problems, so we can use the
Akra Bazzi method to generalize to more recurrences;

T (x) =

k∑
i=1

aiT (bix) + g(x) (6)

• ai is a constant greater than 0.

• p is a real number such that

• bi is a constant is some value between 0 and 1.

k∑
i=1

aib
p
i = 1 (7)

We can use lemma 1 from calculus to introduce our constants:

c3g(x) ≥ xp

∫ x

bix

g(u)

up+1
du ≥ c4g(x)

We can then apply theorem 1 of the Akra - Bazzi method:

T (x) = Θ

(
xp

(
1 +

∫ x

1

g(u)

u(p+ 1)
du

))
(8)

4.2 Proof (as presented by Tom Leighton)

We will split the domain of x into 2 intervals:

I0 = [1, xo]
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for j ≥ 1 : Ij = (x0 + j − 1, x0 + j)

We will show that there is a constant c5 such that for all x > x0

T (x) ≥ c5x
p

(
1 +

∫ x

1

g(u)

up+1

)

4.3 Proof:

T (x) =

k∑
i=1

aiT (bix) + g(x) ≥
k∑

i=1

aic5(bix)
p

(∫ bix

1

g(u)

up+1
du

)

We can separate out the constants c5x
p and as isolate the wanted interval:

c5x
p

k∑
i=1

aibi

(
1 +

∫ x

1

g(u)

up+1
du−

∫ x

bix

g(u)

up+1
du

)

≥ c5x
p

k∑
i=1

aibi

(
1 +

∫ x

1

g(u)

up+1
du− c4

xp
g(x)

)
+ g(x)

Because we know that
k∑

i=1

aib
p
i = 1

we can simplify as such:

= c5x
p

(
1 +

∫ x

1

g(u)

up+1
du− c4

xp
g(x)

)
+ g(x)

= c5x
p

(
1 +

∫ x

1

g(u)

up+1
du

)
+ g(x)− c5c4g(x)

=

(
1 +

∫ x

1

g(u)

up+1
du

)
□
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5 Matrix Multiplication

The idea of recursion used in the Karatsuba Algorithm can be applied to mul-
tiply matrices faster.

5.1 Standard Multiplication

Supposing we start with two n by m matrices;[
1 2
4 5

]
[
a b
d e

]
Traditional matrix multiplication would dictate that we multiply every row in
the first matrix by every column in the second, and then add up values according
to the example below:

[
1a+ 2d 1b+ 2e
4a+ 5d 1b+ 2e

]
This quickly becomes inefficient for larger matrices, so we can implement a
recursive program to divide our original input matrix into 4 quadrants, and
continue this pattern until we reach blocks of size 2 by 2. From there, we
can multiply out the matrix using traditional multiplication, giving us a time
complexity of O(n2): notation.


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 becomes

[
1 2
5 6

] [
3 4
7 8

] [
9 10
13 14

] [
11 12
13 14

]
.

Where we our original input n is divided into 8 sub-problems, each half the size
of A+B, with the addition of the sub-problems coming out to (n/2)2.
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5.2 Strassen Algortihm

Strassen’s method similarly starts by recursively subdividing matrices until they
reach size n by 2. By creating new matrices and maximizing the efficacy of the
distributive property, Strassen’s reduces the multiplicative operations to 7.

Using the same example matrices;[
1 2
4 5

] [
a b
d e

]
our 7 new matrices become:

M1 :
[
(1 + 5)(a+ e)

]
M2 :

[
(4 + 5)(a)

]
M3 :

[
(1)(b− e)

]
M4 :

[
(5)(d− a)

]
M5 :

[
(1 + 4)(e)

]
M6 :

[
(4− 1)(a+ d)

]
M7 :

[
(4− 5)(d+ e)

]
Because every matrix only includes 1 multiplication, we have brought down the
number of multiplications from 8 to 7. Similarly to the Karatsuba algorithm,
this brings down the time complexity from n3 to n2.81.

Given these matrices, the formula for our complete multiplication is as follows:[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]

Example:

If we start with the following matrices:[
1 2
3 4

] [
5 6
7 8

]
Our first step is to create our 7 new matrices:

M1 = (1 + 4)(5 + 8) = 65

M2 = (3 + 4)5 = 35
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M3 = 1(6− 8) = −2

M4 = 4(7− 5) = 8

M5 = (1 + 2)8 = 24

M6 = (3− 1)(5 + 6) = 22

M7 = (2− 4)(7 + 8) = −30

Now we add according to the algorithm:[
(65 + 8− 24 +−30) (−2 + 24)

(35 + 8) (65− 35 +−2 + 22)

]
=

[
19 22
43 50

]

6 Using the Akra Bazzi

The time complexity for the Strassen algorithm can be represented as such;

T (x) = 7T
(x
2

)
+Θ(n)

where we divide up our original matrix into 7 sub-problems, each with size x
2 .

We can find the time complexity of the Strassen algorithm using the Akra Bazzi
method; We remember that: ∑

aib
p
i = 1

Using the strassen equation;
ai = 7

bi = 1/2

7 ∗
(
1

2

)p

= 1

1

2p
=

1

7

p = log27

This provides us with a mathematical relationship between the original size of
our problem, and the number of sub-problems we need to create in order to get
to our final size. We can plug our p value into theorem 1 of the Akra Bazzi
method to get a final time complexity:

T (x) = Θ

(
x(log27)

(
1 +

∫ x

1

g(u)

u(log27+1)
du

))
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